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Self-motion in glass-forming polymers: A molecular dynamics study

A. van Zon and S. W. de Leeuw
Department of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

~Received 26 February 1999!

We present results of molecular dynamics simulations of an undercooled polymer melt, performed to study
the validity of mode-coupling theory~MCT! for realistic polymer melts in general. The mean square displace-
ments of the chain segments are computed to study the diffusion constant of the Rouse-like motion. It is shown
that this diffusion constant follows a power law behavior as a function of the temperature, as predicted by the
MCT. In addition, we studied the incoherent part of the intermediate scattering function and show that these
functions obey the second scaling law of the MCT. We also calculated the relaxation times of thea-relaxation
and found that they follow the same power law (g52.9) as the diffusion constant. Usingg, and the relation-
ships given by MCT, we obtain values fora ~0.27! and b ~0.46! and use these exponents to describe the
b-relaxation regime. We find that the long time part of theb-relaxation can be described accurately by the Von
Schweidler relaxation over a wide range of wave numbers. In the short time regime of theb-relaxation, no
critical decay is observed.@S1063-651X~99!08111-8#

PACS number~s!: 64.70.Pf, 61.25.Hq, 61.20.Ja
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I. INTRODUCTION

Over the past decade or so, much progress has been
in understanding the dynamics of liquids in the undercoo
regime. This started with the work of Leutheusser@1# and
Bengtzeliuset al. @2#, who used a self-consistent kinet
theory to show that dynamical quantities of liquids chan
rapidly near a critical temperature, which can be interpre
as the glass transition temperature. This mode-coup
theory ~MCT! was extended in later years@3# and lead to a
variety of experimental and numerical work.

Using molecular dynamics~MD!, which has been a usefu
tool to understand the dynamics of dense liquids, many
the predictions of MCT have been tested in cases of sim
monoatomic liquids@4,5#, binary liquid mixtures@6,7#, di-
atomic molecules@8#, and water@9#. These simulations show
that MCT provides a suitable theoretical framework for an
lyzing the dynamical properties in the undercooled regim
and that it is not limited to monoatomic liquids.

Experimentally, the relaxation of glass forming liquid
can be studied using inelastic neutron scattering techniq
and light scattering techniques. Because of the low cryst
zation tendency, many of these experiments are performe
polymer systems@10#. Although these experiments are
qualitative agreement with the most general predictions
the MCT, a dramatic slowing down of the dynamics near
glass transition, it is difficult to obtain more detailed quan
tative information. In addition, experiments show deviatio
from MCT. Probably the most important is the existence o
secondary relaxation, the Johari-Goldstein process, whic
believed to be caused by intramolecular movement@11#.

In the case of polymer melts the dynamics outside
undercooled regime differs from that of simple liquids@12#.
It is well known that in the case of unentangled polyme
the dynamics shows a Rouse-like behavior caused by s
tural relaxations of the chain, i.e., motion of sites in t
center of mass of the polymer. When the length of the po
mers is increased, the dynamics changes to a more com
cated reptationlike motion@13#. It is believed that this is
PRE 601063-651X/99/60~6!/6942~9!/$15.00
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caused by the formation of a tube which suppresses the
eral movement of the polymer. MD studies of polymers a
usually performed in the framework of this Rouse or rep
tion dynamics, or when the glass transition is studied, i
phenomenological way@14#. Only recently, analysis of glas
forming polymers in the framework of MCT have been pe
formed @15,16#. These studies show, in addition to expe
mental results and Monte Carlo calculations@17#, that MCT
can be applied to the dynamics of undercooled polym
melts. Recently, Bennemannet al. performed a detailed
study of an undercooled polymer melt@18#. They found that
the intermediate scattering function could be described ac
rately within the framework of MCT. However, due to th
use of a simple bead-spring model, there are some dif
ences with experimental results. In this study, a realis
model is used to describe the polymer dynamics. From di
comparison with neutron scattering experiments it is w
known that these kinds of realistic models are able to
scribe the intermediate scattering function@15,19,20#, which
is the property of interest in this article. Usually, these sim
lations are performed at high temperatures, well above
glass transition temperature.

In this article we show that the dynamics of a realis
undercooled polymer melt can be understood in great de
within the framework of MCT. To perform a detailed test w
focus on the relationship between thea-relaxation and the
b-relaxation regime. According to MCT, both regimes a
characterized by a single parameter, the exponent param
l ~see Sec. II for more details!. The other parameters ar
related tol. Therefore, obtainingl from the a-relaxation
regime, one can check the predictions of MCT in t
b-relaxation regime. In this article we focus on the se
motion of the chain segments. Collective properties will
analyzed in a future publication. In addition, our results a
compared to experiments on glass-forming polymers.
show that the use of a more realistic interaction poten
leads to a good agreement with experimental results,
therefore to a better understanding of the dynamics of gla
forming polymers. The discrepancy between experimen
6942 © 1999 The American Physical Society
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results and MD simulations, as found in Ref.@18#, can be
explained in terms of polymer size and interaction.

The outline of this paper is as follows. In Sec. II w
formulate the results of MCT. Then, in Sec. III the mod
and the simulation details will be discussed. In Sec. IV
give our results, and finally in Sec. V we discuss these
sults.

II. MODE-COUPLING THEORY

In this section we briefly summarize the main ideas a
the results of the idealized MCT. A complete overview
this theory can be found in Ref.@3#.

The property of interest is the intermediate scatter
function, F(k,t), which is the Fourier transform of the Va
Hove correlation functionG(r ,t). Since the Van Hove cor
relation function consists of two parts, a self partGs(r ,t),
which described the diffusive motion of the particles, and
collective partGd(r ,t), which describes the collective mo
tion, its Fourier transform also contains two parts. In t
article we focus on the self part ofF(k,t),

Fs~k,t !5E drGs~r ,t !eik•r5^e2 ik•[ r i (t)2r i (0)]&, ~1!

where ^ . . . & denotes standard ensemble averaging. In
case of polymer dynamics the self part ofF(k,t) describes
the diffusive motion of the chain segments.

The starting point of the MCT is the generalized Lange
equation~GLE!, obtained by using the projection operat
formalism of Mori and Zwanzig@21#. This GLE, which is
still exact, describes the decay of dynamical variables
correlation functions, in terms of a memory functionM (k,t).
Unfortunately, these equations are not exactly solvable
approximations have to be made. Within the mode-mo
coupling approximation, the memory function of the GLE
written in terms of products of the correlation functions
self. This idea is supposed to work best for~a set of! slowly
varying dynamical variables; the hydrodynamic variabl
Products of correlation functions in the memory function c
describe different physical relaxation mechanisms. A w
known example is the product of transverse current corr
tion functions and self intermediate scattering functions. T
product describes the backflow effect and leads to the w
known long time tails@22#. The cage-effect, which become
very important in undercooled liquids, can be described w
products of the intermediate scattering function. In the i
alized version of MCT, only these products are used to
scribe the memory function. This leads to a closed se
coupled integro-differential equations with nonlinear fee
back. Whenk-dependence is neglected, only one equatio
left which can be analyzed with relative ease analytically
well as numerically@1,2#. It has been shown that this nonlin
ear feedback can lead to a transition from ergodic to non
godic behavior for certain coupling strengths of the nonlin
feedback. The latter depends on both temperature and n
ber density. In the following we take the number dens
constant~simulations are performed at constant volume!. As
a result this transition occurs at a certain temperatureTc ,
which is called the critical temperature.
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Whenk-dependence is not neglected, one has to deal w
a set of coupled nonlinear differential equations for whi
analytical results can no longer be obtained. However,
merical studies show that the basic idea, a crossover f
ergodic to nonergodic behavior, is still the same. An imp
tant step in analyzing this crossover is the reduction form
ism @3,23#. As a result, close to the critical temperature a
in the b-relaxation regime,F(k,t) can be described by on
single relaxation functionG(t), which is related toF(k,t)
via

Fs~k,t !5 f k1hkG~ t !, ~2!

where f k is the nonergodicity parameter andG(t) is usually
referred to as theb-correlator. Close to the glass transitio
G(t) obeys the so-called first scaling law,

G~ t !5ceg~ t/te!, ~3!

wheree is the separation parametere5(T2Tc)/Tc , which
gives the relative separation from the critical temperaturete
is the time scale at which theb-relaxation occurs. On the
liquid side of the glass transition, an equation can be deri
for g(t/te) in the above defined scaling region@3#,

1

z̃
1

1

l
z̃g2~ z̃!1L$g2~ t̃ !%50, ~4!

where t̃ 5t/te , z̃5z/ve, and L denotes the Laplace trans
form. g(t/te) now only depends onl, the exponent param
eter. In principle,l can be calculated from the static stru
ture factor, but here we shall use it as a free parameter.
usual way to analyze Eq.~4! is to expandg(t/te) for t!te
like

g~ t/te!5~ t/te!
2a2A1~ t/te!

a, ~5!

and for t@te like

g~ t/te!52B~ t/te!
b1B1~ t/te!

2b, ~6!

whereaP@0,0.5# andbP@0,1#. By substituting these expan
sions in Eq.~4! and sorting out equal powers oft/te , one
finds that the parametersa, b, andl are related via

l5
G~12a!2

G~122a!
5

G~11b!2

G~112b!
, ~7!

whereG(x) denotes the usualG-function. Finally,ce and te
depend one like

ce5Aueu, ~8!

te5t0ueu21/2a. ~9!

Here t0 is a free parameter that depends on the short t
dynamics, binary collisions, and is, in principle, temperatu
dependent. On thea-relaxation timescale the relaxatio
function can be described by a master function of the typ

F~k,t,T!5F̃„k,t/t~T!…. ~10!
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6944 PRE 60A. van ZON AND S. W. de LEEUW
From experiments@24# and simulations@6,8,9,15,16# it is
known that this master function can be described accura
by a stretched exponent,

F̃„k,t/t~T!…5cke
2(t/t)b

. ~11!

Also from numerical evaluation@25# it is known that this
stretched exponential function gives a good description
the a-relaxation. The temperature dependence of the re
ation timet is the same as the one for the long time part
theb-relaxation and is determined by the exponentsa andb
according to

t5ueug/t0 , ~12!

where

g51/2a11/2b. ~13!

We now have a complete description of the dynamics cl
to the critical temperature, which holds for both the coher
and the incoherent part ofF(k,t). It should be noted that no
specific aspects of polymer dynamics~i.e., Rouse dynamics!
are included in this theory. However, the theory includes
static structure factor which contains information about
structural properties of the polymer melt. But this structu
factor only influences the numerical values of the para
eters.

III. MODEL AND SIMULATION

In our simulations we use a system containing 24 lin
polymer chains of 100 sites each. Each of these sites re
sents a group in the chain, for example a CH2-group, so
hydrogen atoms are not taken into account explicitly.
distinction is made between ‘‘bulk’’ sites and ‘‘end’’ sites
The distances between two connected sites is 1.53 Å an
fixed during the simulation. The mass of the atoms is
~1212! a.u. To introduce a certain amount of chain stiffne
we make use of valence angle and torsion angle potential
which the general form is shown in Eqs.~14! and ~15!. For
the nonbonded interactions a Lennard-Jones potential is
@Eq. ~16!#

Vval~u!5
ku

2
~cosu2 cosu0!2, ~14!

Vtors~f!5(
i 50

3

ai cosn f, ~15!

VLJ~r !54eF S s

r D 12

2S s

r D 6G . ~16!

Here u is the valence angle,f the torsion angle, andr the
distance between two nonbonded sites.ku in the valence
angle potential is related to the small angle force constak
via ku5k/sin2 u0. In our simulations we usedku
5133 kcal/mol, which corresponds tok5100 kcal/mol. In
this way the potential barrier for rotation about valen
angles is 16.67 kcal/mol.u0 is set at 120°. The torsion angl
potential contains three minima, one corresponding to a
configuration and two corresponding to gauche configu
ly
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tions. The potential barrier between these minima is set
kcal/mol. This leads to the following numerical prefactor
a051, a1523, a250, anda354 kcal/mol. Thes of the
Lennard-Jones potential is set at 4 Å ande at 0.25 kcal/mol.
This model is close to the one used by Roe in simulations
poly~ethylene! @26#, but differs from the model used by Ben
nemannet al. @16#, who neglected the valence and torsio
potentials in their model. Both Roe and Bennemannet al.
use springs to connect two neighboring sites in the chain

The starting configuration is made using a pivot–Mon
Carlo algorithm with a Metropolis acceptance criterion@27#.
In this way the 24 chains of 100 carbon atoms are ma
100 000 pivot moves per chain are performed in order
avoid correlation between the chains. After this the 24 po
mers are brought together in a computational box~cube! with
a size of 39.3 Å3, corresponding to a density of 0.92 g/mo
Excluded volume is gradually ‘‘switched on’’ using a trun
cated Lennard-Jones potential. Finally the system is eq
brated for 4.4 ns using molecular dynamics atT50.7, which
corresponds to 528 K. In these simulations the bond-leng
between the carbon atoms are kept fixed using a const
dynamics algorithm@28#. The simulations are performed in
NVT ensemble in which the temperature is regulated vi
Nosé-Hoover thermostat@29#.

To get an indication of the glass transition temperat
Tg , the total energy of the system is determined during a
quench. In this quench, the system is cooled in steps of 0
corresponding to 7.5 K, and at each temperature the t
energy is measured during 44 ps. At the glass transition t
perature, the slope of the energy as a function of the te
perature changes, due to a change in specific heat. In
way we find Tg50.25560.01, which corresponds toTg
5192 K.

After equilibration, the system is cooled stepwise fro
T50.7 to T50.330 via temperatures 0.6, 0.525, 0.46
0.427, 0.395, 0.371, 0.353, and 0.340. At each tempera
the system is equilibrated for 2.2 ns and measurements
performed for 4.4 ns. It is important to ensure that our s
tem is in equilibrium at all temperatures. To check this co
dition the system is equilibrated atT50.330, which is the
lowest temperature in our calculations, for another 11
ThenFs(k,t) is again measured for 400 ps and compared
theFs(k,t) from the original configuration. This is shown i
Fig. 1, whereFs(k,t) is shown for three differentk values,
before and after the additional equilibration. It is clearly v
ible that an additional equilibration of 11 ns has no sign
cant effect onFs(k,t). This means that our system is at, or
least very close, to equilibrium.

IV. RESULTS

A. Structural properties

To get information about the structural properties of t
system we calculated the radial distribution function and
static structure factor. The static structure factorS(k), which
is shown in Fig. 2 forT50.7, is similar to that of monatomic
liquids until aboutk54 Å21. The first peak is situated a
approximately 1.5 Å21 or, with s54 Å, at ks56. The
second peak is situated at approximatelyk53 Å21, twice
the k value of the first peak. After this second peakS(k) is
different from that of simple liquids because of the existen
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of relatively large oscillations. Only the first of these osc
lations is shown in Fig. 2. The origin of these oscillations c
be explained via the radial distribution function. The rad
distribution functiong(r ), shown in the inset in Fig. 2 fo
T50.7 andT50.330, is more complicated. At small dis
tances, intramolecular correlations are visible.~The
d-function peak at the bond length is removed from the plo!
For example, the peak atr 52.6 Å is caused by next neare
neighbors in the polymer chain. This distance is fixed
cause of the high energy barrier~16.67 kcal/mol! between
the two energy minima in the valence angle. The absenc
a high peak aroundr 5s shows that the local packing, whic
is a common feature in dense liquids, is hindered by ch
connectivity. Apart from the small bumps caused by ato
further away in the polymer,g(r ) can be split into three
parts: One part originating from intermolecular correlatio
a sharp peak atr 52.6 Å and a d-function peak atr
51.53 Å. By using the relation betweeng(r ) and S(k) it
can be shown that thed function, as well as the sharp pea
leads to an oscillation inS(k). In this way, it can be shown
that thed function at the bond-length causes oscillations

FIG. 1. F(k,t) at T50.330 for k52.88, 1.44, and 0.48 Å21

~left to right!. The solid and dashed lines correspond toF(k,t)
before and after the additional equilibration for 11 ns, respectiv

FIG. 2. Static structure factorS(k) at T50.70. The dashed line
is the contribution toS(k) from the first two peaks ing(r ). Inset:
Radial distribution functiong(r ) at temperaturesT50.70 andT
50.330.
n
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-

of

in
s

,

f

which the first maximum appears at approximatelyk
55.2 Å21. The second peak of this oscillation falls out
the k region measured inS(k). The first peak of the oscilla-
tions originating from the sharp peak atr 52.6 Å is situated
at approximatelyk53.1 Å21. The total contribution to the
static structure factor of these two peaks is shown in Fig
This contribution coincides with the static structure fac
after approximatelyk55 Å21. From the difference betwee
the solid line and the dashed line in Fig. 2, it is clear that
first two peaks inS(k) are caused by intermolecular correl
tions.

B. Mean square displacement

A common way to analyze the single particle dynamics
real space is by calculating the mean square displacemen
polymers one can distinguish the displacement of the ce
of mass and the displacement of a single site. Since we
interested in self motion of the chain segments, we focus
the latter. The results of these calculations are shown in
3 for all the temperatures simulated, fromT50.7 ~right! to
T50.323~left!. Here, the mean square displacement is p
ted as a function ofDat, whereDa is a ‘‘diffusion’’ constant
defined by

^DR~ t !2&5~Dat !a, ~17!

in the long time limit. In this way the curves coincide in th
Rouse-regime. Note that in this regime there is no norm
diffusion, i.e., aÞ1. In unentangled polymer melts,a is
typically about 0.6, somewhat higher than the 0.5 of id
Rouse dynamics@12#. In our simulations we found a value o
0.63, which is the same as in an earlier study of poly~buta-
diene! @15# and in the bead-spring model@16#, indicating that
this value is not sensitive to the energy barriers for torsio
rotation. On a longer timescale the displacement of the c
ter of mass becomes relatively large compared with the
placement of a single site with respect to the center of m
In that limit, the mean square displacement of a single
changes to a linear dependence on time. In our simulat

.
FIG. 3. Mean square displacement as a function ofDat for each

temperature measured betweenT50.70 andT50.323. Inset: Tem-
perature dependence of the diffusion constantDa defined in Eq.
~17!. The straight line is a fit according to Eq.~12! with Tc

50.285 andg52.85.
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6946 PRE 60A. van ZON AND S. W. de LEEUW
no such crossover was found. This implies that the dynam
of the polymers is in the Rouse-regime during the en
simulation time. As a result, the diffusion constantDa ob-
tained using Eq.~17! is a diffusion constant for the Rouse
regime, at all temperatures measured. When a crossover
linear time dependence was observed for the mean sq
displacement, Eq.~17! could not be used simply in the lon
time limit, but should be used in the Rouse-regime.

In the inset of Fig. 3 the ‘‘diffusion’’ constantDa is
shown as a function of the temperature. According to MC
the diffusion constant shows a power law behavior and
comes zero at a critical temperatureTc , Eq. ~12!. The
straight line shows that this power law behavior holds
about three orders of magnitude. The parametert0 is as-
sumed to be temperature independent. The parameterTc
andg obtained in this way are 0.285, corresponding to 2
K, and 2.85, respectively. Thisg is somewhat lower than th
3.2 found in the mean square displacement of poly~butadi-
ene! @15#, but higher than the 2.3 and 2.1 found by Benn
mannet al. @16# in an NVT and NPT ensemble respectivel
The latter are obtained in the real diffusive regime~i.e., a
51), but as we will see in the analysis ofF(k,t), where
similar values are found, this cannot explain the differen
This shows the influence of intramolecular interaction on
slowing down near the glass transition. Although only thr
different polymers are compared, its seems thatg is increas-
ing as the polymer becomes stiffer. Note that poly~butadiene!
has a very stiff double bond. In simple liquids,Da is a real
diffusion constant~i.e., a51) and it is shown in simulations
that close to the critical temperatureTc , the temperature de
pendence ofDa is a power law. It appears that this result c
be generalized to polymer dynamics, were the self-motio
determined by Rouse-like dynamics~i.e., aÞ1), but a
power law behavior ofDa is still observed.

C. Intermediate scattering function

To get more detailed information about the self-motion
the chain segments in the undercooled regime, we calcul
the self part of the intermediate scattering function,Fs(k,t),
using Eq.~1!. In the remaining part of this article the supe
script s is dropped.F(k,t) is calculated in a range fromk
50.16 Å21, which is the smallest wave number accessi
in our simulation, tok53.84 Å21, which is about three
times the wave number of the first peak inS(k). In Fig. 4 we
show a typical result,k51.44 Å21, for all temperatures
measured. The wave vectork51.44 Å21 corresponds to the
first peak in the static structure factor. At low temperatur
F(k,t) shows the typical features of glass forming liquids:
fast process, followed by a plateau, theb-relaxation, and
finally the a-relaxation. In simple monoatomic liquids, th
a-relaxation is related to the diffusive motion of the atom
and theb-relaxation is related to the movement of the ato
in their cage. In the case of polymers, one would expect
the a-relaxation is related to the Rouse-like motions of t
polymers, at least at smallk values.

To perform a detailed test of the MCT we start by an
lyzing thea-relaxation. In this regime, the relaxation time
are obtained by using a stretched exponent as a fit func
These relaxation times are obtained at different temperat
to determine the parameterg. By using Eq. ~7!, we can
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extract the values of the corresponding parametersa andb,
to describe theb-relaxation regime. In the remaining part o
this paper the details of this procedure are described.

1. a-relaxation

In the a-relaxation regime, the second scaling law is o
of the major results of the MCT. This scaling law, also r
ferred to as the time-temperature superposition principle,
been shown to be valid for numerous types of liqui
@7,8,15,16#, when the temperature is close toTc . We illus-
trate this principle in Fig. 5 fork50.48, 1.44, and 2.88 Å21,
whereF(k,t) is plotted as a function oft/t. For smallk, this
superposition principle holds for the entire temperature
gion measured, but on increasingk, this temperature region
becomes smaller. Fork51.44 Å21 and k52.88 Å21, the
temperaturesT50.7 andT50.6 do not obey this superpos
tion principle and are not shown. For these temperatures
parameterb, Eq. ~11!, is larger. This indicates that, fork
51.44 Å21 and k52.88 Å21, these two temperatures fa
out of the temperature region described by MCT.

The parametersck , tk , and bk of the master function,
Eq. ~11!, can be determined in the totalk-range. We followed
the procedure that the fit of this stretched exponent mus
correct for t@t and found that the length of the region o
F(k,t) that can be described with a stretched exponentk
dependent. The largest regions were observed for large w
numbers, as shown in Fig. 5. The values ofck and bk ob-
tained in this way are shown in Fig. 6. For k→0, b is get-
ting close to 0.63, which is the same value as has been fo
for a in the mean square displacement. This can be un
stood by using the Gaussian approximation, which becom
valid in the smallk region,

F~k,t !5e2(1/6)k2^DR2(t)&5e2(1/6)k2(Dat)a
. ~18!

Comparing the Gaussian approximation with a stretched
ponent, it is easy to see thatb→a ~50.63! for small k val-
ues. Hence, at smallk values, this stretched exponential b
havior is simply a result of Rouse-like dynamics, and n
caused by the glass transition. In the case of normal di
sion,a51, b→1 for smallk values@7#. On increasingk, b
is decreasing and becomes constant,b'0.41, beyondk

FIG. 4. Incoherent intermediate scattering functionF(k,t) at k
51.44 Å21, for each temperature measured betweenT50.70 and
T50.323.
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51.5 Å21. In this region these values ofb are different
from those obtained by Bennemannet al. @18# who observed
values of about 0.75 at wave vectors corresponding to
first peak of S(k), which are similar tob ’s obtained in
simple liquids. Values ofb of about 0.40 are in good agree
ment with results of neutron scattering experiments@30#,
where this parameter ranges from 0.40 to 0.55, dependin
the type of polymer.

Another consequence of this approximation is thattk
;k22/0.63 for k→0. In Fig. 7 it is shown that this approxi
mation is correct untilk'1 Å21 and that this region is in-

FIG. 5. Incoherent intermediate scattering functionF(k,t) as a
function of t/t for k50.48 Å21 ~a!, k51.44 Å21 ~b!, and k
52.88 Å21 ~c!. The dashed line is a fit according to a stretch
exponent, Eq.~11!, the dotted line is the Von Schweidler relaxatio
Eq. ~19!, and the dotted-dashed line is a fit according to the V
Schweidler relaxation including thet2b term.
e

on

dependent of the temperature. These observations show
it can be misleading to use values ofb obtained near the firs
peak ofS(k) in the Gaussian approximation. In this wayb is
underestimated, in this case 0.40 instead of 0.63, and th
fore thek dependence oft is overestimated. This could prob
ably explain the small deviations from the Gaussian appro
mation found by Arbeet al. @30# in their study of the nature
of the a-relaxation~homogeneous or heterogeneous!. After
k'1 Å21 there is a somewhat strongerk dependence. This
differs substantially from the observations of Bennema
et al. @18#, who found a crossover to the largek limit of
MCT; t;k2b, even before the first peak inS(k). Such a
crossover is not observed in our simulations and in exp
ments on glass forming polymers@30#. This, together with
the differentk dependence ofb shows the influence of a
more realistic model on the dynamics of glass forming po
mers, and demonstrates that a simple model is not suffic
in this k region. The values ofck @cf. Eq. ~11!# show roughly
a Gaussiank dependence.

When bk and ck are known, the general form of th
stretched exponent is known andt can be obtained at eac
temperature. In Fig. 8 this temperature dependence is sh
for k50.48, 1.44, and 2.88 Å21. The straight lines corre-

n

FIG. 6. ck , f k , andbk of Eqs.~11! and~19!. The solid line is a
Gaussian fit usings50.23 Å and the dashed line corresponds
b50.41.

FIG. 7. tk as a function ofk for T50.330 andT50.70. The
dashed line corresponds to thek dependence of the Gaussian A
proximation, usingb50.63 as found in the mean square displac
ment.
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spond to a power law behavior. As in the case of the m
square displacement, we usedTc50.285, corresponding to
215 K. Using Eq.~12!, and again takingt0 temperature in-
dependent,g can be obtained. We found 2.85 fork
50.48 Å21, 2.95 for k51.44 Å21, and 2.90 for k
52.88 Å21. Theseg ’s are approximately the same asgD .
This differs from the observations of Bennemannet al. @18#,
who found a difference between the temperature depend
of the diffusion constantDa and thea-relaxation. However,
at the same time they show that the Gaussian approxima
is valid for small wave vectors, from which one can conclu
that gD andg should be the same, as observed in our sim
lations. We now neglect this smallk dependence ing and
useg52.90, which is just the average of these threek val-
ues. The values ofg obtained fromk50.48 Å21 and k
51.44 Å21 differ by less than 2% from this average.

2. b-relaxation

Onceg is known, one can obtaina, b, and l by using
Eqs. ~7! and ~13!. This leads to four parameters which, a
cording to MCT, describe theb-relaxation regime. These ar

g52.90,

l50.81,

a50.27,

b50.46.

As mentioned before, a good way to show the validity of t
MCT is to use these values in the expansions of
b-correlator, Eqs.~5! and ~6!. We start with the long time
part of theb-relaxation. By rewriting Eq.~6! and usingB1
50, we obtain the Von Schweidler relaxation

F~k,t !5 f k2hk~ t/t!b. ~19!

FIG. 8. Temperature dependence of the relaxation timestk for
k50.48, 1.44, and 2.88 Å21. The straight lines are fits accordin
to Eq. ~12! using Tc50.28 and g52.85 (k50.48 Å21),g
52.95 (k51.44 Å21), andg52.90 (k52.88 Å21).
n

ce

on
e
-

e
e

This relaxation is also shown in Fig. 5 for all threek values.
For k50.48 Å21 and k51.44 Å21, this Von Schweidler
relaxation gives a perfect fit for the long-time part of th
b-relaxation for more than two decades in time at the low
temperatures. Fork50.48 Å21 this region extends ove
more then three decades in time. Fork52.88 Å21, the Von
Schweidler relaxation is only valid in a very short time r
gime. Here, the long-time part of theb-relaxation can still be
described accurately by a stretched exponent. In thisk range,
the b-relaxation regime is probably to small to observe t
Von Schweidler relaxation. When we look at smallk values,
where the Von Schweidler relaxation is observed, it is cl
that the time regime were it is valid becomes smaller as
temperature is increased. Therefore, it is very likely th
closer toTc , the extend of the Von Schweidler relaxatio
becomes larger, even at largerk values. However, it is also
possible that MCT is not able to describe thisk region, be-
cause of the importance of intramolecular correlations. B
one has to keep in mind that the second scaling law and
power law behavior of the relaxation time are still obeyed
larger k values. Using Eq.~19!, we determinedf k in the
entirek region measured and the results are shown in Fig
Unlike ck , f k coincides perfectly with the Gaussian curve

The fact that theb-relaxation regime can be described b
MCT was also observed by Eliassonet al., who measured
the dielectric susceptilibity of amorphous poly~ethylene
terephthalate! ~PET! @31#. They found that aboveTc , the
b-relaxation could be described withl50.82, correspond-
ing to g53.0 andb50.44. These values are close to t
ones we found in analyzingF(k,t). The exponent paramete
l found in our analysis is quite different from the one o
tained by Bennemannet al. @18#, who obtainedl50.635
corresponding tog52.07 andb50.75. Again, this indicates
the influence of the intramolecular forces on the dynam
close to the glass transition.

To get more information about the long-time part of t
b-relaxation,F(k,t) is plotted in Fig. 9 for differentk val-
ues, as a function oftb, at the lowest temperature measure
F(k,t) is rescaled to fall onF(k,t) for k51.44 Å21. So in
fact, we plottedf 1hG(t) obtained from differentk values,
wheref andh are equal tof k andhk for k51.44 Å21. For
k50.90 Å21, the lowest curve,F(k,t) becomes a straigh

FIG. 9. f 1hG(t) as a function oft0.46, obtained fromF(k,t)
for k52.72, 2.08, 1.44, and 0.80 Å21 ~top to bottom! at tempera-
ture T50.323. The dashed line corresponds to the Von Schwei
relaxationF(k,t)5 f k2hkt

b, usingb50.46.
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line indicating the Von Schweidler relaxation over a lar
time region. On increasingk, this region becomes smalle
The point where the differentG(t)’s leave the straight line is
where thea-relaxation sets in. Since the relaxation times
the a-relaxation are k dependent, this point is als
k-dependent. The length of the Von Schweidler relaxat
can be increased using ak dependentb, but this is in contra-
diction with the predictions of MCT, which states thatb, as
well asa, l, andg arek independent. In other simulations
k dependentb is found @7# and, for obvious reasons, this
called the effective Von Schweidler parameterb8. A way to
avoidk dependent parameters is to add a term proportiona
t2b to Eq. ~19!. This term is found analytically by Franosc
et al. @32# as a first order correction to MCT, further awa
from the critical temperature. Fork51.44 Å21 and k
52.88 Å21 the results of these fits are also shown in Fig.
It is clearly visible that including thet2b term extends the
validity of the fit over almost one decade. Also, the para
etersB1 increase by about 10% for both wave vectors. Ho
ever, no significant changes were observed inf k .

The first part of theb-relaxation regime can be analyze
in a similar way. By rewriting Eq.~5! and usingA50, we
obtain the critical decay

F~k,t !5 f k1hk~ t0 /t !a. ~20!

So, we rescaleF(k,t) for different k values, as in the analy
sis of the long-lime part of theb-relaxation, and plot these a
a function of t2a. This is shown in Fig. 10. In the time
region of the critical decay we should expect a straight li
similar as in the case of the Von Schweidler relaxation. I
clearly visible that no such area exists, even when we
different values fora. The reason for this are the oscillation
around t51 ps, also present in Fig. 5 and Fig. 9. The
oscillations are believed to be related to the boson peak@33#,
found in many other glasses and glass formers, in both si
lations and experiments. A detailed study of the boson p
falls outside the scope of this article.

FIG. 10. f 1hG(t) as a function oft20.27, obtained fromF(k,t)
for k52.72, 2.08, 1.44, and 0.80 Å21 ~top to bottom! at tempera-
ture T50.323. The dashed line corresponds to the critical de
F(k,t)5 f k1hkt

2a, usinga50.27.
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V. SUMMARY AND CONCLUSION

We performed a detailed analysis of the dynamical pr
erties of glass-forming polymers using molecular dynami
The main goal was to determine to what extent the MC
which is derived for monoatomic liquids, is able to descri
the dynamics of realistic polymer melts in the undercoo
regime. In this paper we focused on the self-motion of
individual sites in the polymers using the mean square
placement and the incoherent intermediate scattering fu
tion. The latter is calculated in a largek range.

By analyzing the mean square displacement we fi
Rouse-like dynamics in the entire time scale of our simu
tions. The corresponding ‘‘diffusion’’ constant follows
power law behavior. It is shown that in thea-relaxation re-
gime the second scaling law of the MCT is valid in the ent
k range. The relaxation times follow the same power l
behavior as the diffusion constantDa , i.e.,gD andg are the
same. Onceg is known,a andb are determined and checke
using the Von Schweidler relaxation and the critical dec
Using b, the last part of theb-relaxation is described accu
rately, but no critical decay is observed. Finally, factorizati
of k and t in the b-relaxation, Eq.~2!, is found.

These results show that the MCT can be used to desc
the dynamics of realistic polymer melts in the undercoo
regime. The only way the typical Rouse-like motion of th
polymers can be observed is in the mean square displ
ment of the sites in the polymer chain and in the smallk limit
of F(k,t). Here b reaches the value of 0.63 as predict
from the mean square displacement. Also in this limit, wh
the a-relaxation is caused by a Rouse-like motion, MC
holds. The last part of theb-relaxation, which describes th
escape of a particle out of its cage is described well by MC
This leads to the conclusion that the cage effect, leading
the structural arrest in the idealized MCT, is similar in pol
mer melts and monatomic liquids. It appears that the geo
etry of the polymer chain, which influences the short ran
order as seen in the radial distribution function, does
influence the cage-effect significantly. This is in agreem
with simulations of diatomic molecules@8# and water@9#,
also having a different geometry, which show similar resu
Schweizer @34,35# studied the short time dynamics of
model in which both Rouse dynamics and mode coupl
terms were included. He found that the mean square
placement is proportional tot9/32 at a short timescale. No
such behavior was found in our simulations.

In addition to the mode-coupling analysis, we compar
our results with a detailed MD-study of a glass forming po
mers melt performed by Bennemannet al. @18#, and to ex-
perimental results. We showed that the intramolecular in
action, which is the main difference between the two mod
leads to a better agreement with experimental results on
following cases:~i! The stretching parameterb is similar,
around 0.4, as found in neutron scattering experiments.~ii !
Thek dependence of the relaxation times of thea-relaxation
agrees with experimental results, and~iii ! the exponent pa-
rameterl obtained in this study~0.81! is close to the experi-
mentally obtained value, found in glass forming PET~0.82!.

In the analysis described in this paper we made use of
relationship between the parametersa, b, g, and l. In
principle, according to MCT, these parameters can be ca

y
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lated once theS(k) is known. Also, the nonergodicity pa
rameterf k can be calculated. The latter is calculated by Na
roth and Kob@36# in the case of a binary liquid. In this way
more information about the validity of the MCT in the ca
of polymers can be obtained. This, in addition to the analy
of the coherent part of the intermediate scattering functi
will be the subject of future work.

In summary, we performed a detailed analysis of the
namics of an undercooled polymer melt within the fram
work of MCT. The incoherent part of the intermediate sc
tering function is calculated and we show that MCT, whi
is derived to describe the dynamics of simple liquids, can
used to understand the dynamics of undercooled poly
n
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melts. The coherent part of the intermediate scattering fu
tion, together with a more quantitative analysis, will be t
subject of future work.
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