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Self-motion in glass-forming polymers: A molecular dynamics study
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We present results of molecular dynamics simulations of an undercooled polymer melt, performed to study
the validity of mode-coupling theorfMCT) for realistic polymer melts in general. The mean square displace-
ments of the chain segments are computed to study the diffusion constant of the Rouse-like motion. It is shown
that this diffusion constant follows a power law behavior as a function of the temperature, as predicted by the
MCT. In addition, we studied the incoherent part of the intermediate scattering function and show that these
functions obey the second scaling law of the MCT. We also calculated the relaxation timeswofeafzexation
and found that they follow the same power layw=2.9) as the diffusion constant. Using and the relation-
ships given by MCT, we obtain values far (0.27 andb (0.46) and use these exponents to describe the
B-relaxation regime. We find that the long time part of gweelaxation can be described accurately by the Von
Schweidler relaxation over a wide range of wave numbers. In the short time regime gfrtHaxation, no
critical decay is observedS1063-651X99)08111-§

PACS numbeis): 64.70.Pf, 61.25.Hq, 61.20.Ja

[. INTRODUCTION caused by the formation of a tube which suppresses the lat-
eral movement of the polymer. MD studies of polymers are
Over the past decade or so, much progress has been madsually performed in the framework of this Rouse or repta-
in understanding the dynamics of liquids in the undercooledion dynamics, or when the glass transition is studied, in a
regime. This started with the work of Leutheus$&l and  phenomenological wall4]. Only recently, analysis of glass
Bengtzeliuset al. [2], who used a self-consistent kinetic forming polymers in the framework of MCT have been per-
theory to show that dynamical quantities of liquids changeformed[15,16. These studies show, in addition to experi-
rapidly near a critical temperature, which can be interpretednental results and Monte Carlo calculatidi§], that MCT
as the glass transition temperature. This mode-couplingan be applied to the dynamics of undercooled polymer
theory (MCT) was extended in later yeaf8] and lead to a melts. Recently, Bennemanaet al. performed a detailed
variety of experimental and numerical work. study of an undercooled polymer mgit8]. They found that
Using molecular dynamiocgvD), which has been a useful the intermediate scattering function could be described accu-
tool to understand the dynamics of dense liquids, many ofately within the framework of MCT. However, due to the
the predictions of MCT have been tested in cases of simplgse of a simple bead-spring model, there are some differ-
monoatomic liquidg4,5], binary liquid mixtures[6,7], di-  ences with experimental results. In this study, a realistic
atomic molecule$8], and watef9]. These simulations show model is used to describe the polymer dynamics. From direct
that MCT provides a suitable theoretical framework for ana-<comparison with neutron scattering experiments it is well
lyzing the dynamical properties in the undercooled regimeknown that these kinds of realistic models are able to de-
and that it is not limited to monoatomic liquids. scribe the intermediate scattering functid®,19,2Q, which
Experimentally, the relaxation of glass forming liquids is the property of interest in this article. Usually, these simu-
can be studied using inelastic neutron scattering techniqudations are performed at high temperatures, well above the
and light scattering techniques. Because of the low crystalliglass transition temperature.
zation tendency, many of these experiments are performed in In this article we show that the dynamics of a realistic
polymer systemg10]. Although these experiments are in undercooled polymer melt can be understood in great detail
qualitative agreement with the most general predictions ofvithin the framework of MCT. To perform a detailed test we
the MCT, a dramatic slowing down of the dynamics near thgfocus on the relationship between therelaxation and the
glass transition, it is difficult to obtain more detailed quanti- 8-relaxation regime. According to MCT, both regimes are
tative information. In addition, experiments show deviationscharacterized by a single parameter, the exponent parameter
from MCT. Probably the most important is the existence of an (see Sec. Il for more detajlsThe other parameters are
secondary relaxation, the Johari-Goldstein process, which iglated toh. Therefore, obtaining. from the a-relaxation
believed to be caused by intramolecular movenjéit. regime, one can check the predictions of MCT in the
In the case of polymer melts the dynamics outside theB-relaxation regime. In this article we focus on the self-
undercooled regime differs from that of simple liquid®2]. = motion of the chain segments. Collective properties will be
It is well known that in the case of unentangled polymers,analyzed in a future publication. In addition, our results are
the dynamics shows a Rouse-like behavior caused by strucompared to experiments on glass-forming polymers. We
tural relaxations of the chain, i.e., motion of sites in theshow that the use of a more realistic interaction potential
center of mass of the polymer. When the length of the polyleads to a good agreement with experimental results, and
mers is increased, the dynamics changes to a more compliherefore to a better understanding of the dynamics of glass-
cated reptationlike motiof13]. It is believed that this is forming polymers. The discrepancy between experimental
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results and MD simulations, as found in RgL8], can be Whenk-dependence is not neglected, one has to deal with
explained in terms of polymer size and interaction. a set of coupled nonlinear differential equations for which
The outline of this paper is as follows. In Sec. Il we analytical results can no longer be obtained. However, nu-
formulate the results of MCT. Then, in Sec. Ill the model merical studies show that the basic idea, a crossover from
and the simulation details will be discussed. In Sec. IV weergodic to nonergodic behavior, is still the same. An impor-
give our results, and finally in Sec. V we discuss these retant step in analyzing this crossover is the reduction formal-
sults. ism [3,23]. As a result, close to the critical temperature and
in the B-relaxation regimef (k,t) can be described by one
single relaxation functiorG(t), which is related ta~(k,t)
via

In this section we briefly summarize the main ideas and
the results of the idealized MCT. A complete overview of

this theory can be found in Réf3]. wheref, is the nonergodicity parameter a@t) is usually

The property of interest is the intermediate scatteringr ferred t th lator. Cl o the al i i
function, F(k,t), which is the Fourier transform of the Van eferred to as thg-corre ator. 0s€ to the glass transition,
G(t) obeys the so-called first scaling law,

Hove correlation functiors(r,t). Since the Van Hove cor-
relqtion funqtion consists Qf two parts, a self p@ft(r,t), G(t=c.g(t/t,), 3)
which described the diffusive motion of the particles, and a

collective partGY(r,t), which describes the collective mo-
tion, its Fourier transform also contains two parts. In this
article we focus on the self part &f(k,t),

II. MODE-COUPLING THEORY

Fs(k,t)ka+ th(t), (2)

wheree is the separation parameter (T—T.)/T., which
gives the relative separation from the critical temperatiyre.

is the time scale at which thg-relaxation occurs. On the
liquid side of the glass transition, an equation can be derived

_ . for g(t/t,) in the above defined scaling regi@ai,
Fs(k,t)=JerS(r,t)e”“:(e*'k-[ri(t)*ri(o)]% & g(t/te) g regig8]

_ i+ 1WZQZ(E) +£{g’(1)} =0, 4

where(...) denotes standard ensemble averaging. In the z A

case of polymer dynamics the self partfofk,t) describes ~ _

the diffusive motion of the chain segments. wheret=t/t_., z=z/w., and £ denotes the Laplace trans-
The starting point of the MCT is the generalized Langevinform. g(t/t.) now only depends oRn, the exponent param-

equation(GLE), obtained by using the projection operator eter. In principle,\ can be calculated from the static struc-

formalism of Mori and Zwanzid21]. This GLE, which is ture factor, but here we shall use it as a free parameter. The

still exact, describes the decay of dynamical variables andsual way to analyze Eq4) is to expandg(t/t,) for t<t,

correlation functions, in terms of a memory functist(k,t). like

Unfortunately, these equations are not exactly solvable and

approximations have to be made. Within the mode-mode g(t/ty) = (t/ty) "= Aq(t/t)?, 6)

coupling approximation, the memory function of the GLE is

written in terms of products of the correlation functions it- and fort>t_ like

self. This idea is supposed to work best farset of slowly b T

varying dynamical variables; the hydrodynamic variables. g(t/t)=—B(t/t)°+By(t/ty) >, (6)

Products of correlation functions in the memory function can -

describe different physical relaxation mechanisms. A We”vyhere_ae[O,O.SJ andbe[o,l]. By substituting these expan-

known example is the product of transverse current correlaSionS in Eq.(4) and sorting out equal powers oft., one

tion functions and self intermediate scattering functions. Thidinds that the parametegs b, and\ are related via

product describes the backflow effect and leads to the well F(1-2)2 T(1+b)2

known long time tail§22]. The cage-effect, which becomes - (1-a) - ( )

very important in undercooled liquids, can be described with I'(1-2a) I'(1+2b)’

products of the intermediate scattering function. In the ide-

alized version of MCT, only these products are used to dewhereI'(x) denotes the usudl-function. Finally,c. andt,

scribe the memory function. This leads to a closed set oflepend ore like

coupled integro-differential equations with nonlinear feed-

@)

back. Wherk-dependence is neglected, only one equation is Ce= \/H (8)
left which can be analyzed with relative ease analytically as
well as numericallyf1,2]. It has been shown that this nonlin- t.=tole| Y&, 9

ear feedback can lead to a transition from ergodic to noner-

godic behavior for certain coupling strengths of the nonlineaHeret, is a free parameter that depends on the short time
feedback. The latter depends on both temperature and nurelynamics, binary collisions, and is, in principle, temperature
ber density. In the following we take the number densitydependent. On ther-relaxation timescale the relaxation
constant(simulations are performed at constant voloms ~ function can be described by a master function of the type
a result this transition occurs at a certain temperaiye 5

which is called the critical temperature. F(k,t,T)=F(k,t/7(T)). (10
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From experiment§24] and simulationg6,8,9,15,18 it is  tions. The potential barrier between these minima is set at 2
known that this master function can be described accuratelgcal/mol. This leads to the following numerical prefactors:

by a stretched exponent, ap=1, a;=—3, a,=0, andaz=4 kcal/mol. Theo of the
_ p Lennard-Jones potential is set at 4 A andt 0.25 kcal/mol.
Fk,t/7(T))=ce V7", (11)  This model is close to the one used by Roe in simulations of

) ) o ) poly(ethylene [26], but differs from the model used by Ben-
Also from numerical evaluatiofi25] it is known that this  Lomannet al. [16], who neglected the valence and torsion
stretched exponential function gives a good description Of)otentials in their model. Both Roe and Bennemaral.
the a-relaxation. The temperature dependence of the relax;se springs to connect two neighboring sites in the chain.
ation timer is the same as the:‘ one for the long time part of Tphe starting configuration is made using a pivot—Monte
the B-relaxation and is determined by the exponem&db  carlo algorithm with a Metropolis acceptance criter[@7].
according to In this way the 24 chains of 100 carbon atoms are made.
100000 pivot moves per chain are performed in order to

=|€|"ty, (12 . . . )
avoid correlation between the chains. After this the 24 poly-
where mers are brought together in a computational mbe with
a size of 39.3 A, corresponding to a density of 0.92 g/mol.
y=1/2a+1/2b. (13 Excluded volume is gradually “switched on” using a trun-

cated Lennard-Jones potential. Finally the system is equili-
We now have a complete description of the dynamics clos@rated for 4.4 ns using molecular dynamic§at0.7, which
to the critical temperature, which holds for both the coherentorresponds to 528 K. In these simulations the bond-lengths
and the incoherent part &f(k,t). It should be noted that no petween the carbon atoms are kept fixed using a constraint
specific aspects of polymer dynami¢®., Rouse dynami¢s — dynamics algorithni28]. The simulations are performed in a
are included in this theory. However, the theory includes the\VT ensemble in which the temperature is regulated via a
static structure factor which contains information about theNoseHoover thermostaf29].
structural properties of the polymer melt. But this structure To get an indication of the glass transition temperature
factor only influences the numerical values of the param-T , the total energy of the system is determined during a fast
eters. quench. In this quench, the system is cooled in steps of 0.01,

corresponding to 7.5 K, and at each temperature the total

[1l. MODEL AND SIMULATION energy is measured during 44 ps. At the glass transition tem-

erature, the slope of the energy as a function of the tem-
erature changes, due to a change in specific heat. In this
vay we find T;=0.255+0.01, which corresponds td,
=192 K.

In our simulations we use a system containing 24 Iineanp
polymer chains of 100 sites each. Each of these sites repr
sents a group in the chain, for example a /&ioup, so

gyotl_rogt_en atoms darf) TOt tak?tr; l'ir(',t,o .‘?CCOU”{; prclj'S'“Yt- No After equilibration, the system is cooled stepwise from
Istinction IS made between “bulk™ Sites and "end™ Sites. v_q 7 15 T=0.330 via temperatures 0.6, 0.525, 0.469,

The distances between two connected sites is 1.53 A and 5427 0.395, 0.371, 0.353, and 0.340. At each temperature

fixed during th_e simulation. Th_e mass of the atoms s 14the system is equilibrated for 2.2 ns and measurements are
(12+2) a.u. To introduce a certain amount of chain stiffness, rformed for 4.4 ns. It is important to ensure that our sys-

we make use of valence angle and torsion angle potentials, . ilibri I To check thi i
which the general form is shown in Eqd4) and (15). For {))fm is in equilibrium at all temperatures. To check this con

. . o dition the system is equilibrated at=0.330, which is the
the nonbonded interactions a Lennard-Jones potential is used est temperature in our calculations, for another 11 ns
[Eq. (16)] ’ '

ThenF3(k,t) is again measured for 400 ps and compared to
K, the F3(k,t) from the original configuration. This is shown in
Vyal(0)= ?(0089— cosfy)?, (14 Fig. 1, whereF5(k,t) is shown for three differerk values,
before and after the additional equilibration. It is clearly vis-
3 ible that an additional equilibration of 11 ns has no signifi-
Vtors(d’):iEO a; cod &, (15) cant effect or=3(k,t). This means that our system is at, or at

least very close, to equilibrium.
o 12 o 6
von=ad (7] {7/ ]

Here 6 is the valence anglep the torsion angle, and the To get information about the structural properties of the
distance between two nonbonded sitkg.in the valence system we calculated the radial distribution function and the
angle potential is related to the small angle force condtant static structure factor. The static structure fa&@k), which

via ky=Kk/sir® 6. In our simulations we usedk, is shown in Fig. 2 fof=0.7, is similar to that of monatomic
=133 kcal/mol, which corresponds ka=100 kcal/mol. In  liquids until aboutk=4 A~1. The first peak is situated at
this way the potential barrier for rotation about valenceapproximately 1.5 A! or, with c=4 A, at ko=6. The
angles is 16.67 kcal/mol is set at 120°. The torsion angle second peak is situated at approximatety3 A1, twice
potential contains three minima, one corresponding to a cithe k value of the first peak. After this second pe&) is
configuration and two corresponding to gauche configuradifferent from that of simple liquids because of the existence

(16) IV. RESULTS

A. Structural properties
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. S . FIG.3. M ispl t functiob gff f h
before and after the additional equilibration for 11 ns, respectlvelyte G. 3. Mean square displacement as a functiob of for eac

mperature measured betweéken 0.70 andT=0.323. Inset: Tem-
perature dependence of the diffusion constantdefined in Eq.
of relatively large oscillations. Only the first of these oscil- (17). The straight line is a fit according to Eq12) with T,
lations is shown in Fig. 2. The origin of these oscillations can=0.285 andy=2.85.
be explained via the radial distribution function. The radial
distribution functiong(r), shown in the inset in Flg 2 for which the first maximum appears at approxima’[d{y
T=0.7 andT=0.330, is more complicated. At small dis- =52 A~ The second peak of this oscillation falls out of
tances, intramolecular correlations are visibléThe  thek region measured iS(k). The first peak of the oscilla-
o-function peak at the bond length is removed from the plot. tions originating from the sharp peakrat 2.6 A is situated
For example, the peak at=2.6 A is caused by next nearest at approximatelk=3.1 A~L. The total contribution to the
neighbors in the polymer chain. This distance is fixed bestatic structure factor of these two peaks is shown in Fig. 2.
cause of the high energy barri€t6.67 kcal/mol between  Thjs contribution coincides with the static structure factor
the two energy minima in the valence angle. The absence qffter approximatelk=5 A~1. From the difference between
a high peak around= o shows that the local packing, which the solid line and the dashed line in Fig. 2, it is clear that the

is @ common feature in dense liquids, is hindered by chaifirst two peaks irS(k) are caused by intermolecular correla-
connectivity. Apart from the small bumps caused by atomsjgns.

further away in the polymerg(r) can be split into three
parts: One part originating from intermolecular correlations,
a sharp peak ar=2.6 A and aé-function peak atr ) . o
=153 A. By using the relation betweeg(r) and S(k) it A common way to analyze the single particle dynamics in
can be shown that thé function, as well as the sharp peak, real space is by calc_ulz_itlng_ the mean square displacement. In
leads to an oscillation iS(k). In this way, it can be shown polymers one can distinguish the displacement of the center

that the function at the bond-length causes oscillations of°f mass and the displacement of a single site. Since we are
interested in self motion of the chain segments, we focus on

the latter. The results of these calculations are shown in Fig.
3 for all the temperatures simulated, froh+ 0.7 (right) to
T=0.323(left). Here, the mean square displacement is plot-
ted as a function ob ,t, whereD , is a “diffusion” constant

B. Mean square displacement

4.0

30 ¢ defined by
(AR(1)?)=(D,t)*, (17)
Xopl
& 20 in the long time limit. In this way the curves coincide in the
Rouse-regime. Note that in this regime there is no normal
diffusion, i.e., «#1. In unentangled polymer meltg; is
1.0 + typically about 0.6, somewhat higher than the 0.5 of ideal
Rouse dynamicElL2]. In our simulations we found a value of
) 0.63, which is the same as in an earlier study of flmiya-
0.0 Le===” diene [15] and in the bead-spring modgl6], indicating that

0.0 2.0 4.0 6.0 8.0 this value is not sensitive to the energy barriers for torsional

k rotation. On a longer timescale the displacement of the cen-

FIG. 2. Static structure fact@(k) at T=0.70. The dashed line ter of mass becomes relatively large compared with the dis-

is the contribution taS(k) from the first two peaks im(r). Inset:  placement of a single site with respect to the center of mass.
Radial distribution functiong(r) at temperature§=0.70 andT  In that limit, the mean square displacement of a single site
=0.330. changes to a linear dependence on time. In our simulations
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no such crossover was found. This implies that the dynamics 1.0
of the polymers is in the Rouse-regime during the entire
simulation time. As a result, the diffusion constdhf ob- 0.8 |
tained using Eq(17) is a diffusion constant for the Rouse-
regime, at all temperatures measured. When a crossover to a
linear time dependence was observed for the mean square
displacement, Eq.17) could not be used simply in the long
time limit, but should be used in the Rouse-regime. 04 f

In the inset of Fig. 3 the “diffusion” constanD, is
shown as a function of the temperature. According to MCT, 02
the diffusion constant shows a power law behavior and be-
comes zero at a critical temperatuie, Eqg. (12). The
straight line shows that this power law behavior holds for 0.0 =57 0° 0 0
about three orders of magnitude. The paramégeis as- t (ps)
sumed to be temperature independent. The param@&ters
and y obtained in this way are 0.285, corresponding to 215 FIG. 4. Incoherent intermediate scattering functfefk,t) at k
K, and 2.85, respectively. Thigis somewhat lower than the =1.44 A™%, for each temperature measured betw&en0.70 and
3.2 found in the mean square displacement of (mltadi- T=0.323.
ene [15], but higher than the 2.3 and 2.1 found by Benne- )
mannet al.[16] in an NVT and NPT ensemble respectively. €xtract the values of the corresponding paramedeaisd b,
The latter are obtained in the real diffusive regifie., o  t0 describe thes-relaxation regime. In the remaining part of
=1), but as we will see in the analysis Bfk,t), where this paper the details of this procedure are described.
similar values are found, this cannot explain the difference.
This shows the influence of intramolecular interaction on the
slowing down near the glass transition. Although only three In the a-relaxation regime, the second scaling law is one
different polymers are compared, its seems théa increas-  of the major results of the MCT. This scaling law, also re-
ing as the polymer becomes stiffer. Note that poiyadien¢  ferred to as the time-temperature superposition principle, has
has a very stiff double bond. In simple liquids,, is a real been shown to be valid for numerous types of liquids
diffusion constanti.e., «=1) and it is shown in simulations [7,8,15,16, when the temperature is close Tg. We illus-
that close to the critical temperatufe, the temperature de- trate this principle in Fig. 5 fok=0.48, 1.44, and 2.88 AL,
pendence oD, is a power law. It appears that this result canwhereF (k,t) is plotted as a function df 7. For smallk, this
be generalized to polymer dynamics, were the self-motion isuperposition principle holds for the entire temperature re-
determined by Rouse-like dynamidse., «#1), but a gion measured, but on increasikgthis temperature region
power law behavior oD, is still observed. becomes smaller. Fdt=1.44 A"! andk=2.88 A1, the
temperature§ =0.7 andT=0.6 do not obey this superposi-
tion principle and are not shown. For these temperatures the
parameterB, Eq. (11), is larger. This indicates that, fd¢

To get more detailed information about the self-motion of=1.44 A! andk=2.88 A%, these two temperatures fall
the chain segments in the undercooled regime, we calculateslit of the temperature region described by MCT.
the self part of the intermediate scattering functiBf(k,t), The parameters,, 7., and B, of the master function,
using Eq.(1). In the remaining part of this article the super- Eq.(11), can be determined in the totetange. We followed
script s is dropped.F(k,t) is calculated in a range frotk  the procedure that the fit of this stretched exponent must be
=0.16 A~!, which is the smallest wave number accessiblecorrect fort> 7 and found that the length of the region of
in our simulation, tok=3.84 A™*, which is about three F(k,t) that can be described with a stretched exponeft is
times the wave number of the first peak3(k). In Fig. 4 we  dependent. The largest regions were observed for large wave
show a typical resultk=1.44 A%, for all temperatures numbers, as shown in Fig. 5. The valuescefand 8, ob-
measured. The wave vectior=1.44 A1 corresponds to the tained in this way are shown in Fig. 6. For40, S is get-
first peak in the static structure factor. At low temperaturesting close to 0.63, which is the same value as has been found
F(k,t) shows the typical features of glass forming liquids: A for « in the mean square displacement. This can be under-
fast process, followed by a plateau, tierelaxation, and stood by using the Gaussian approximation, which becomes
finally the a-relaxation. In simple monoatomic liquids, the valid in the smallk region,
a-relaxation is related to the diffusive motion of the atoms
and theB-relaxation is related to the movement of the atoms F(k,t)=e (UOK(AR) = g~ (LBKX(D o0 (18)
in their cage. In the case of polymers, one would expect that
the a-relaxation is related to the Rouse-like motions of theComparing the Gaussian approximation with a stretched ex-
polymers, at least at smallvalues. ponent, it is easy to see thgt— a (=0.63 for small k val-

To perform a detailed test of the MCT we start by ana-ues. Hence, at small values, this stretched exponential be-
lyzing the a-relaxation. In this regime, the relaxation times havior is simply a result of Rouse-like dynamics, and not
are obtained by using a stretched exponent as a fit functiowaused by the glass transition. In the case of normal diffu-
These relaxation times are obtained at different temperatureson, a=1, 8— 1 for smallk values[7]. On increasing, 8
to determine the parameter. By using Eq.(7), we can is decreasing and becomes constgbty0.41, beyondk

06 -

F(k.t)

1. a-relaxation

C. Intermediate scattering function
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< 090 - & 0.60
(i o=y
0.85 r 0.40 t
0'890 ‘1(;)|‘1 020 0 1 2 3 4 5
k(A™
1.00 FIG. 6. ¢y, f,, andBy of Egs.(11) and(19). The solid line is a
Gaussian fit usingr=0.23 A and the dashed line corresponds to
080 | B=0.41.
0.60 | dependent of the temperature. These observations show that
2 it can be misleading to use values@bbtained near the first
g peak ofS(k) in the Gaussian approximation. In this wayis
040 r underestimated, in this case 0.40 instead of 0.63, and there-
fore thek dependence of is overestimated. This could prob-
0.20 t ably explain the small deviations from the Gaussian approxi-
mation found by Arbeet al.[30] in their study of the nature
0.00 of the a-relaxation(homogeneous or heterogenepusfter
10 k=1 A~!there is a somewhat strongedependence. This
differs substantially from the observations of Bennemann
1.00 et al. [18], who found a crossover to the largelimit of
MCT; 7~k P, even before the first peak (k). Such a
crossover is not observed in our simulations and in experi-
0.80 ments on glass forming polymef80]. This, together with
L the differentk dependence o8 shows the influence of a
__ 060 | more realistic model on the dynamics of glass forming poly-
< mers, and demonstrates that a simple model is not sufficient
% 040 | in thisk region. The values df [cf. Eq.(11)] show roughly
a Gaussiark dependence.
0.20 | \. When B, and c, are known, the general form of the
’ . stretched exponent is known amdcan be obtained at each
temperature. In Fig. 8 this temperature dependence is shown
0.00 0 107 107 PP for k=0.48, 1.44, and 2.88 A'. The straight lines corre-
t't
6
FIG. 5. Incoherent intermediate scattering functfefk,t) as a 10
function of t/= for k=0.48 A™* (a), k=1.44 A! (b), and k 10° | Y
=2.88 A! (¢). The dashed line is a fit according to a stretched 10t | © o Y
exponent, Eq(11), the dotted line is the Von Schweidler relaxation, C o "~
Eqg. (19), and the dotted-dashed line is a fit according to the Von 10° | o OOO
Schweidler relaxation including tr8® term. 2 1% | v
Y o e
=1.5 A~L. In this region these values @ are different 10" Tog %%
from those obtained by Bennemaenal.[18] who observed 10° [ 0 T=0.395 DE\:%
values of about 0.75 at wave vectors corresponding to the y o T=0.70
first peak of S(k), which are similar tog’s obtained in 10 Tk
simple liquids. Values o8 of about 0.40 are in good agree- -~ ;
. . . 10 10
ment with results of neutron scattering experimef86], K (A™)

where this parameter ranges from 0.40 to 0.55, depending on

the type of polymer. FIG. 7. 7, as a function ofk for T=0.330 andT=0.70. The
Another consequence of this approximation is th@t dashed line corresponds to tkelependence of the Gaussian Ap-

~k 2063 for k—0. In Fig. 7 it is shown that this approxi- proximation, usingd=0.63 as found in the mean square displace-

mation is correct untik=1 A~ and that this region is in- ment.
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FIG. 9. f+hG(t) as a function ot®*® obtained fromF(k,t)

FIG. 8. Temperature dependence of the relaxation timefer ~ for k=2.72, 2.08, 1.44, and 0.80 A (top to bottom at tempera-
k=0.48, 1.44, and 2.88 AL The straight lines are fits according ture T=0.323. The dashed line corresponds to the Von Schweidler
to Eq. (12 using T,=0.28 and y=2.85 k=0.48 A1),y relaxationF(kt)=f,—ht® usingb=0.46.
=295 k=1.44 A1), andy=2.90 k=2.88 A™1).

This relaxation is also shown in Fig. 5 for all threealues.
spond to a power law behavior. As in the case of the meargr k=048 A1 andk=1.44 A !, this Von Schweidler
square displacement, we us&g=0.285, corresponding t0 re|axation gives a perfect fit for the long-time part of the
215 K. Using Eq.(12), and again takind, temperature in- g _re|axation for more than two decades in time at the lowest
dependeljtl,y can be obtained. _Vl\/e found 2.85 fdt  temperatures. Fok=0.48 A1 this region extends over
=0.48 A ! 2.95 for k=1.44 A » and 2.90 fork  more then three decades in time. kor2.88 A1, the Von
=2.88 A% Thesey's are approximately the same &.  Schweidler relaxation is only valid in a very short time re-
This differs from the observations of Bennemagtral. [18],  gime. Here, the long-time part of therelaxation can still be
who fou.nd a difference between the temper_ature dependengRscriped accurately by a stretched exponent. Inkiiisige,
of the diffusion constanD, and thea-relaxation. However, he g-relaxation regime is probably to small to observe the
at the same time they show that the Gaussian approximatiofon Schweidler relaxation. When we look at smiaflalues,
is valid for small wave vectors, from which one can concludeyynere the Von Schweidler relaxation is observed, it is clear
thatyp andy should be the same, as observed in our simuthat the time regime were it is valid becomes smaller as the
lations. We now neglect this smalldependence iy and  temperature is increased. Therefore, it is very likely that

usey=2.90, which is just the average of these thkeeal-  cjoser toT,, the extend of the Von Schweidler relaxation
ues. The values ofy obtained fromk=0.48 A™* andk  pecomes larger, even at largevalues. However, it is also
=1.44 A" differ by less than 2% from this average. possible that MCT is not able to describe tkisegion, be-
cause of the importance of intramolecular correlations. But
2. B-relaxation one has to keep in mind that the second scaling law and the

Once y is known, one can obtaia, b, and\ by using Power law behavior of the relaxation time are still obeyed at

Egs. (7) and (13). This leads to four parameters which, ac- larger k values. Using Eq(19), we determinedfy in the

cording to MCT, describe thg-relaxation regime. These are entirek region measured and the results are shown in Fig. 6.
Unlike ¢, fi coincides perfectly with the Gaussian curve.

The fact that the3-relaxation regime can be described by
v=2.90, MCT was also observed by Eliassahal, who measured
the dielectric susceptilibity of amorphous p@hylene
terephthalate (PET) [31]. They found that abovd ., the
B-relaxation could be described with=0.82, correspond-
ing to y=3.0 andb=0.44. These values are close to the
a=0.27 ones we found in analyzing(k,t). The exponent parameter

' \ found in our analysis is quite different from the one ob-
tained by Bennemanet al. [18], who obtained\ =0.635
b=0.46. corresponding toy=2.07 andb=0.75. Again, this indicates
the influence of the intramolecular forces on the dynamics

As mentioned before, a good way to show the validity of theclose to the glass transit.ion. .
To get more information about the long-time part of the

MCT is to use these values in the expansions of the

B-correlator, Eqs(5) and (6). We start with the long time B-relaxation,F(_k,t) is plotted in Fig. 9 for differenk val-
part of the3-relaxation. By rewriting Eq(6) and usingB, ues, as a function df, at the lowest temperature measured.

_ : ; ; F(k,t) is rescaled to fall ofF (k,t) for k=1.44 A" Soin
=0, we obtain the Von Schweidler relaxation ) :
fact, we plottedf + hG(t) obtained from differenk values,

wheref andh are equal tof, andh for k=1.44 A1 For
F(k,t)="f—h(t/7)°. (19 k=0.90 A%, the lowest curveF(k,t) becomes a straight

A=0.81,
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1.20 - - \ - V. SUMMARY AND CONCLUSION

-0.27

"
f+hG(t)

We performed a detailed analysis of the dynamical prop-
erties of glass-forming polymers using molecular dynamics.
The main goal was to determine to what extent the MCT,
which is derived for monoatomic liquids, is able to describe
the dynamics of realistic polymer melts in the undercooled
regime. In this paper we focused on the self-motion of the
individual sites in the polymers using the mean square dis-
placement and the incoherent intermediate scattering func-

tion. The latter is calculated in a lardgerange.
0.60 s s ‘ s By analyzing the mean square displacement we find
0o o2 0.4t'°'27 06 08 10 Rouse-like dynamics in the entire time scale of our simula-
tions. The corresponding “diffusion” constant follows a

FIG. 10.f+hG(t) as a function ot %%, obtained fronF(k,t) ~ Powe’ law behavior. It is shown that in therelaxation re-
for k=2.72, 2.08, 1.44, and 0.80 & (top to bottom at tempera-  9/M€ the second scall_ng Ia_lw of the MCT is valid in the entire
ture T=0.323. The dashed line corresponds to the critical deca)k range. The relaxation times follow the same power law
F(k,t)=f +ht 2, usinga=0.27. behavior as the diffusion constant,, i.e., yp andy are the

same. Oncey is known,a andb are determined and checked
. ) ) using the Von Schweidler relaxation and the critical decay.
line indicating the Von Schweidler relaxation over a large ygjng 1 the last part of thes-relaxation is described accu-
time region. On increasing, this region becomes smaller. 5ie1y but no critical decay is observed. Finally, factorization
The point where thg dlfferer@(t)’§ leave the stra|.ght I.|ne IS of k andt in the B-relaxation, Eq(2), is found.
where thea-relaxation sets in. Since the relaxation times of  These results show that the MCT can be used to describe
the «-relaxation are k dependent, this point is also the dynamics of realistic polymer melts in the undercooled
k-dependent. The length of the Von Schweidler l‘e|axati0r]'egime_ The only way the typical Rouse-like motion of the
can be increased usingkadependenb, but this is in contra-  polymers can be observed is in the mean square displace-
diction with the predictions of MCT, which states thgtas  ment of the sites in the polymer chain and in the srkéithit
well asa, N, andy arek independent. In other simulations a of F(k,t). Here 8 reaches the value of 0.63 as predicted
k dependenb is found[7] and, for obvious reasons, this is from the mean square displacement. Also in this limit, where
called the effective Von Schweidler parameltér A way to  the a-relaxation is caused by a Rouse-like motion, MCT
avoidk dependent parameters is to add a term proportional tbolds. The last part of thg-relaxation, which describes the
t?° to Eq. (19). This term is found analytically by Franosch escape of a particle out of its cage is described well by MCT.
et al. [32] as a first order correction to MCT, further away This leads to the conclusion that the cage effect, leading to
from the critical temperature. Fok=1.44 A1 and k the structural arrest in the idealized MCT, is similar in poly-
=2.88 A ! the results of these fits are also shown in Fig. 5.mer melts and monatomic liquids. It appears that the geom-
It is clearly visible that including thé?® term extends the etry of the polymer chain, which influences the short range
validity of the fit over almost one decade. Also, the param-order as seen in the radial distribution function, does not
etersB; increase by about 10% for both wave vectors. How-influence the cage-effect significantly. This is in agreement
ever, no significant changes were observed,in with simulations of diatomic moleculds] and water[9],

The first part of the3-relaxation regime can be analyzed also having a different geometry, which show similar results.

in a similar way. By rewriting Eq(5) and usingA=0, we  Schweizer[34,35 studied the short time dynamics of a
obtain the critical decay model in which both Rouse dynamics and mode coupling

terms were included. He found that the mean square dis-
placement is proportional 16”32 at a short timescale. No
such behavior was found in our simulations.

F(k,t)=f +h(to /)% (20) In addition to the mode-coupling analysis, we compared
our results with a detailed MD-study of a glass forming poly-
mers melt performed by Bennemaenal. [18], and to ex-

So, we rescal& (k,t) for differentk values, as in the analy- perimental results. We showed that the intramolecular inter-
sis of the long-lime part of thg-relaxation, and plot these as action, which is the main difference between the two models,
a function oft™2. This is shown in Fig. 10. In the time leads to a better agreement with experimental results on the
region of the critical decay we should expect a straight linefollowing cases:(i) The stretching paramete® is similar,
similar as in the case of the Von Schweidler relaxation. It isaround 0.4, as found in neutron scattering experimeiis.
clearly visible that no such area exists, even when we tryThek dependence of the relaxation times of theelaxation
different values foia. The reason for this are the oscillations agrees with experimental results, afiidl) the exponent pa-
aroundt=1 ps, also present in Fig. 5 and Fig. 9. Theserameter\ obtained in this study0.81) is close to the experi-
oscillations are believed to be related to the boson p8ak  mentally obtained value, found in glass forming P&T182).
found in many other glasses and glass formers, in both simu- In the analysis described in this paper we made use of the
lations and experiments. A detailed study of the boson peakelationship between the parametexs b, y, and \. In

falls outside the scope of this article. principle, according to MCT, these parameters can be calcu-

1.00 |

f+hG(1)

0.80
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lated once theS(k) is known. Also, the nonergodicity pa- melts. The coherent part of the intermediate scattering func-

rameterf, can be calculated. The latter is calculated by Nau-ion, together with a more quantitative analysis, will be the

roth and Kob[36] in the case of a binary liquid. In this way, subject of future work.

more information about the validity of the MCT in the case
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